Courses-

Answers for Quizzes & Assignments that I have taken

View project on GitHub

Imperial College London - Mathematics for Machine Learning: Linear Algebra

Imperial College London INSTRUCTORS

Instructors: David Dye, Samuel J. Cooper and A. Freddie Page

At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning.

Syllabus

Introduction to Linear Algebra and to Mathematics for Machine Learning

  • In this first module we look at how linear algebra is relevant to machine learning and data science. Then we’ll wind up the module with an initial introduction to vectors. Throughout, we’re focussing on developing your mathematical intuition, not of crunching through algebra or doing long pen-and-paper examples. For many of these operations, there are callable functions in Python that can do the adding up the point is to appreciate what they do and how they work so that, when things go wrong or there are special cases, you can understand why and what to do.

Vectors are objects that move around space

  • In this module, we look at operations we can do with vectors - finding the modulus (size), angle between vectors (dot or inner product) and projections of one vector onto another. We can then examine how the entries describing a vector will depend on what vectors we use to define the axes - the basis. That will then let us determine whether a proposed set of basis vectors are what’s called ‘linearly independent.’ This will complete our examination of vectors, allowing us to move on to matrices in module 3 and then start to solve linear algebra problems.

Matrices in Linear Algebra: Objects that operate on Vectors

  • Now that we’ve looked at vectors, we can turn to matrices. First we look at how to use matrices as tools to solve linear algebra problems, and as objects that transform vectors. Then we look at how to solve systems of linear equations using matrices, which will then take us on to look at inverse matrices and determinants, and to think about what the determinant really is, intuitively speaking. Finally, we’ll look at cases of special matrices that mean that the determinant is zero or where the matrix isn’t invertible - cases where algorithms that need to invert a matrix will fail.

Matrices make linear mappings

  • In Module 4, we continue our discussion of matrices; first we think about how to code up matrix multiplication and matrix operations using the Einstein Summation Convention, which is a widely used notation in more advanced linear algebra courses. Then, we look at how matrices can transform a description of a vector from one basis (set of axes) to another. This will allow us to, for example, figure out how to apply a reflection to an image and manipulate images. We’ll also look at how to construct a convenient basis vector set in order to do such transformations. Then, we’ll write some code to do these transformations and apply this work computationally.

Eigenvalues and Eigenvectors: Application to Data Problems

  • Eigenvectors are particular vectors that are unrotated by a transformation matrix, and eigenvalues are the amount by which the eigenvectors are stretched. These special ‘eigen-things’ are very useful in linear algebra and will let us examine Google’s famous PageRank algorithm for presenting web search results. Then we’ll apply this in code, which will wrap up the course.